Habitability in Saline Environments on Mars ## Nicholas J. Tosca Origins of Life Initiative Organismic & Evolutionary Biology Harvard University Cambridge, MA 02138 ### The Ancient Martian Surface: How Habitable? - To what extent can we generalize? - On Mars, like Earth, water is the only game in town... - Some controls on the limits of terrestrial life: - Temperature - Radiation - Acidity - Temporal availability of water - Salinity (water activity) - Define habitability in an evolutionary context - Prebiotic chemistry & the *origin* of life - Evolution and/or adaptation to changing surface chemistry # Water Activity (a_{H2O}) - A thermodynamic measure of salinity - Water is chemically unavailable at high solute concentration - Increasing salinity decreases water activity $$\ln a_{_{H_2O}} = \frac{\phi(\sum v_i m_i) M_{_W}}{-1000}$$ #### **Selected Water Activity Values** | Pure water | 1.00 | |--------------------------|------| | Average river water | 0.99 | | Seawater | 0.98 | | Halite (NaCl) saturation | 0.75 | Sharp a_{H2O} limitations on biological activity ## $a_{\rm H2O}$: Limits on terrestrial life - Microbial strategies for low a_{H2O} conditions: - 1. Synthesize "compatible solutes" (e.g., glycine, betaine) - 2. Increase salt content of cytoplasm (Evolutionary processes) - Biochemical consequences of high salinity (low a_{H2O}) - Inhibition of protein folding - Bio-molecule denaturation & functionality loss - What are the numerical limits? Cytoplasm, from Goodsell (1993) The Machinery of Life. ## $a_{\rm H2O}$: Limits on terrestrial life ### $a_{\rm H2O} \sim 0.90$: Limit for most organism growth ### $a_{\rm H2O} \sim 0.75$: Limit for most extremophilic fungi & archaea ### $a_{\rm H2O} = 0.61$: - Effective habitability limit - X. Bisporus in high-sugar food #### Water Activity and Food Science 1.00 fresh meat, sausages, eggs, low-salt bacon high-salt bacon, orange juice concentrate 0.90 jams, hard cheese, cured ham 0.80 molasses, maple syrup 0.70 dried fruit, corn syrup, rolled oats 0.60 **a**H20 chocolate, confectionary, honey 0.50 dried egg, cocoa 0.40 crackers, dried potato flakes 0.30 dried milk, dried vegetables 0.20 0.10 (adapted from *Brewer*, 1999) 0.00 E - ~175 of 10⁷ known species exhibit halo-tolerance / halo-philism - Regardless of the precise number, limits provide useful benchmarks # Calculating a_{H2O} for Martian Systems - 1. Constraints on dilute fluid chemistry - Experimental weathering studies - 2. Thermodynamic model for highly saline waters - 3. Data on mineral solubility - 4. Martian saline assemblages Thermodynamic simulation of evaporation yields osmotic coefficient (calculated with Pitzer equations) Water activity is proportional to the *osmotic coefficient* $$\ln a_{_{H_2O}} = \frac{\phi(\sum v_i m_i) M_{_W}}{-1000}$$ Goal: For a martian water, calculate a_{H2O} at the point of saline mineral precipitation # Mineral Precipitation and $a_{\rm H2O}$ # a_{H2O} and Seawater Evaporation ## Meridiani Planum Evaporite Minerals ## Water Activity on Mars ## a_{H2O}: General Mineralogical Trends - Chlorides reflect distinctly low a_{H2O} (<0.50) - Function of sulfate vs. chloride solubility - Insensitive to SO₄/Cl ratio of initial water - Gypsum & carbonates are "insoluble" & reflect high a_{H2O} (~0.95) All Mg-, Fe²⁺-sulfates reflect low a_{H2O} (~0.78 and lower) - Fe³⁺-sulfates (exclusive of jarosite & schwertmannite) reflect both low $a_{\rm H2O}$ and low pH - Include ferricopiapite, copiapite-group minerals, rhomboclase, etc. ## Low a_{H2O} : A Challenge for Life on Ancient Mars | • | Distinction between | |---|------------------------------| | | originating in & adapting to | | | low a _{H2O} | Halo-tolerance/philism is evolutionary #### **Selected Water Activity Values** | Epsomite at Meridiani Planum Halite at Meridiani Planum SNC Meteorite Brines | 0.78
0.51
0.40 | |---|------------------------| | Paso Robles Soil Brines | 0.61 | | Limit for most organism growth Limit for most extremophilic fungi & archaea Effective "habitability limit" (<i>X. bisporus</i>) | ~0.90
~0.75
0.61 | - Low a_{H2O} and pH prohibit pre-biotic reactions - There must be numerical limits & they provide useful benchmarks - Where are the dilute fluids? - Are we seeing snapshots as Mars evaporated to dryness? - Is this representative of H₂O-limited processes? - Window of habitability was short and occurred early ## Relative Timing ## Origin, Evolution & Preservation ### On a local/regional scale: - Need Favorable "pre-biotic" chemistry - Reducing conditions - "Mild" pH - Highest possible a_{H2O} - Maximum temporal availability of water - Sustained versus episodic - Optimal preservational (post-depositional) characteristics - Less water exposure - In other words: go to where life grabbed a foot-hold & was pickled ### Optimal habitability & preservation: An Example #### Sites capturing a phyllosilicate → sulfate transition - Gale crater, S. Meridiani, Miyamoto - Phyllosilicate-dominated strata: Habitable chemistry - Higher a_{H2O} (Generally) - Reducing (Fe-phyllosilicates) - Circum-neutral pH - Prolonged water availability - Sulfate-rich strata: Diverse preservation potential - Morphology, isotopic signatures, etc. - Capturing the transition: - How did chemistry & climate change? - How did life respond? - The essence of our understanding of the martian surface ## Maximizing Habitability: Syn-depositional Characteristics #### Water Activity | ,,,,,, | riotrity | |--|--| | Good | Bad | | Phyllosilicates ^a | Mg-sulfates (all) | | Gypsum | Fe ²⁺ -sulfates | | Carbonates | Na, K-sulfates | | | Chlorides (all) | | | Fe ³⁺ -sulfates ^b | | R | edox | | Good | Bad | | Fe ²⁺ -phyllosilicates ^c | Fe ³⁺ -sulfates | | Siderite | Fe ³⁺ -oxides | | | pН | | Good | Bad | | Phyllosilicates | Fe ³⁺ -sulfates ^b | | Gypsum ^d | "Ochreous" Fe ³⁺ -sulfates ^e | | Mg-sulfates ^d | Fe ²⁺ -sulfates ^f | | Temporal ava | ilability of water* | | Good | Bad | | Phyllosilicates | | #### **NOTES:** - ^a In general occur in dilute waters. Many smectites form in saline conditions, thus cannot as yet quantify a $_{\rm H2O}$ - ^b Fe ³⁺ sulfates exclusive of "ochreous" phases; include copiapites, rhomboclase, etc. These minerals require both low a _{H2O} and very low pH to form - ^c Generally require reducing conditions. In addition, Fe³⁺ smectites may only form through the oxidation of Fe²⁺ -precursors, suggesting they originally require reducing conditions - ^d These phases alone cannot constrain pH; they are pH-independent - ^e Include jarosite and schwertmannite; they are relatively insoluble but need acidic pH to form - ^f Do not strictly require low pH, but acidic pH favors their formation and stability through suppression of oxidation kinetics by O₂(g) - * Much of these constraints may come from sedimentology & in situ textural analysis in addition to geomorphology